DC reference sources

Arie van Staveren
Wouter A. Serdijn

Overview

• Voltage sources
 (Main part) ➔ Basics and Implementations

• Current sources ➔ Basics and Implementations
Ideal voltage source

- Output voltage *independent* of I, T,

Ideal current source

- Output current *independent* of V, T,

Practical voltage source

- Beyond I_{th} a voltage source
- Output voltage *depends on* external parameters

Practical current source

- Beyond V_{th} a current source
- Output current *depends on* external parameters
Quality Aspects V,I Source

- Output impedance
- Noise level
- Temperature dependency

Power Supply Rejection Ratio

- V,I source powered by a power source

PSRR is a measure for the sensitivity of the output quantity (V,I) for power supply variations

\[
PSRR = 20 \cdot 10^{ \left(\frac{dV_{\text{ref}}}{dV_{\text{supply}}} \cdot \frac{V_{\text{ref}}}{V_{\text{supply}}} \right) } \quad \text{unit: dB}
\]

\[
PSRR = 20 \cdot 10^{ \left(\frac{dI_{\text{ref}}}{dI_{\text{supply}}} \cdot \frac{I_{\text{ref}}}{I_{\text{supply}}} \right) } \quad \text{unit: dB}
\]

- The larger the better
Voltage sources

Simple \(\rightarrow\) Quality \(\rightarrow\) Complicated

Most simple voltage source

- Accuracy depends on \(V_{cc}\) and matching of \(R_1\) and \(R_2\)
- Low output impedance and low noise costs *power* or a *capacitor*
- \(\text{PSRR} = 1\)

 Can also be improved by *capacitor*

\[
V_{\text{ref}} = V_{cc} \frac{R_2}{R_1 + R_2}
\]
Non-linear voltage divider

A. Diode-connected transistor
B. Zener diode \(\rightarrow \) Zener and Avalanche breakdown
C. Normally-off FET (NMOS)
D. Bipolar transistor at punch-through

Reference Sources
A. van Staveren and W.A. Serdijn

Zener breakdown

Electron must gain energy equal to \(E_g \) for a transition from valence band to conduction band

Reference Sources
A. van Staveren and W.A. Serdijn
Avalanche breakdown

- Electrons are accelerated by E-field
- Speed high enough ➔ other electrons are made free

Requirements:
- **E-field** must be high enough
- **Free path length** must be high enough

Positive t.c.
Dominant $V_r > 6$V
Temperature compensation Zener diode

- Use a Zener diode with $V_{br} = 5 \ldots 6\,V$ (5.6V)
 - Both Avalanche and Zener breakdown occur
 - Temperature behavior reduced

- Zener diode with avalanche in series with a forward biased junction

 ![Zener diode diagram](image1)

 t.c. about $-2\,mV/K$

 t.c. about $+2\,mV/K$

 Requires 6..7V

Buried Zener diode

![Buried Zener diode diagram](image2)

- No degradation due to surface effects
 - less 1/f - noise
 - less sensitive to stress
Forward biased junction

\[
I_C = I_S \exp\left(qV_{BE} / kT \right)
\]

\[
qA_n^2 \bar{D}_n \quad N_B
\]

\[
CT^3 \exp\left[-E_G(T) / kT \right] \quad kT / q \quad BT^\eta
\]

\[
I_{C0}(T / T_0)^\theta = C^\prime(T / T_0)^^\eta \exp\left[qV_{BE} - E_G(T) \right] / kT
\]

\[
V_{BE}(T) = \frac{E_G(T)}{q} - \left[\frac{E_G(T_0)}{q} - V_{BE}(T_0) \right] \frac{T}{T_0} + (\theta - \eta) \frac{kT}{q} \ln \left(\frac{T}{T_0} \right)
\]

First-order approximation around T_0

\[
V_{BE}(T) = \frac{E_G(T)}{q} - \left[\frac{E_G(T_0)}{q} - V_{BE}(T_0) \right] \frac{T}{T_0} + (\theta - \eta) \frac{kT}{q} \ln \left(\frac{T}{T_0} \right)
\]

\[
V_{BE}(T) = \frac{E_G(T)}{q} - \left[\frac{E_G(T_0)}{q} - V_{BE}(T_0) \right] \frac{T}{T_0} + (\theta - \eta) \frac{kT}{q} \ln \left(\frac{T}{T_0} \right)
\]

Taylor

\[
V_{GEff} = V_{G(0)} + (\eta - \theta)kT_0 / q
\]

- \(V_{BE} \) has negative t.c.
- \(V_{BE} \downarrow \) [t.c.] \(\uparrow \)
- \(V_{GEff} \) independent of \(V_{BE} \)
Example

Assume a transistor is biased at a constant current of 1 μA. For the transistor the following parameters apply: $I_S = 18 \, \text{mA}$, $XTI = 3$ and $V_{G0(0)} = 1.2\, \text{V}$.

What is the first-order temperature coefficient at $T_0 = 300\, \text{K}$?

$$V_{BE(300K)} = 640 \, \text{mV}$$
$$V_{Geff} = 1.2\, \text{V} + (3-0) \cdot 25.8\, \text{mV} = 1.28\, \text{V}$$

$$V_{Geff} = V_{G0(0)} + (\eta - 0)kT/q$$

$t.c. = -2.1 \, \text{mV/K}$

(Biasing a BE-junction)

- Bias current far below high-level injection ($I_C << I_{KF}$)
- Bulk resistances (made) negligible

$$I_C = I_S \left[\exp\left(\frac{V_{BE}}{V_T}\right) - 1 \right] \left[1 - \frac{V_{BC}}{V_{AF}} - \frac{V_{BE}}{V_{AR}} \right]$$

- Nullor makes $V_{BC}=0$
- Nullor supplies I_b and I_{load}
- Low beta no problem
- V_{BE} is buffered
- VAR remains

Diagram

Reference Sources: A. van Staveren and W.A. Serdijn
Noise of a BE junction

- S_y, noise-power density spectrum [V2/Hz]
 \[S_y = 4kT \left(\frac{1}{r_b} + \frac{1}{2g_m} \right) \]
- Collector shot noise and thermal noise of the base resistance dominate

- Assume $r_b=150$, $I_C=100\ \mu A$ and $V_{BE}=600\ mV$
 \[1 \frac{1}{2g_m} = 130 \]
 \[S_y = 4kT \cdot 280\ \Omega \]

Comparison

- $R = \frac{600\ mV}{100\ \mu A} = 6000\ \Omega$

- Noise of a BE-junction is **20** times lower
- Output impedance is **25** times lower
Proportional To Absolute Temperature

- Difference of two junction voltages

\[V_{\text{ref}} = V_{\text{BE1}} - V_{\text{BE2}} = \frac{kT}{q} \ln(n \cdot m) \]

Example:
\[
\text{n}=10 \rightarrow V_{\text{ref}} = \frac{kT}{q} \ln(10) \\
\text{m}=1 = T \cdot 198 \, \mu\text{V/K} \\
= 59.58 \, \text{mV} @ 300\,\text{K}
\]

Use as temperature sensor

Combination of a \(V_{\text{BE}} \) and \(V_{\text{PTAT}} \)

\(V_{\text{BE}} \) has a negative t.c.
\(V_{\text{PTAT}} \) has a positive t.c.

Sum can have zero t.c.

The Bandgap Reference
The bandgap reference

Relates output voltage to the bandgap voltage at 0K

\[V_{\text{ref}} = x \cdot \frac{E_G(0)}{q} \]

- Describe base-emitter voltage as:

\[V_{BE}(T) = V_{\text{Geff}} - \left[V_{\text{Geff}} - V_{BE}(T_0) \right] \frac{T}{T_0} \]

Use linear combination of base-emitter voltages

Reference Sources
A. van Staveren and W.A. Serdijn
Linear combination of V_{BE}

\[
a_1 V_{BE1} = a_1 V_{Geff} - a_1 \left[V_{Geff} - V_{BE1}(T_0) \right] T / T_0 \\
a_2 V_{BE2} = a_2 V_{Geff} - a_2 \left[V_{Geff} - V_{BE2}(T_0) \right] T / T_0 + \\
= (a_1 + a_2) V_{Geff} + 0 \cdot T / T_0
\]

V_{ref}

\[V_{BE1} \]

\[V_{BE2} \]

\[V_{Geff} \]

\[a_1 \]

\[a_2 \]

T

NB: $a_2 < 0$

Bandgap Reference Example

\[V_{REF} = a_1 V_{BE1} + a_2 V_{BE2} \]

\[a_1 = 1 + \frac{R_2}{R_1} \]

\[a_2 = -\frac{R_2}{R_1} \]

\[a_1 + a_2 = 1 \]

But also: $V_{R1} = V_{BE2} - V_{BE1} = V_{PTAT}$

\[V_{REF} = V_{BE2} + A_U V_{PTAT} \]
Accuracy of V_{ref}

a_1, a_2 : rely on matching

V_{BE1}, V_{BE2} : several parameters are important

- I_{S1}, I_{S2} : matching and absolute accuracy
- I_{C1}, I_{C2} : use accurate bias techniques
- θ_1, θ_2
- E_G, η, V_{AR} : given by process, good characterization required

Key parameters of device : E_G, V_{AR}, I_S, η

For accurate design these should be well-known!

Noise performance of Bandgap Reference

- Noise of the bandgap reference is a weighted sum of the noise contributions of the V_{BE}

S_{ref} is inversely proportional to the current consumption
Power-Supply Rejection Ratio

\[PSRR = 20 \cdot 10^{\log \left(\frac{V_{r}}{V_{AF}} \frac{V_{ref}}{V_{s}} \right)} \]

unit: dB

Design example 1V, 100 μA, BGR

(Second-order compensated)

- Describe \(V_{BE_s} \) with a second-order polynomial

\[V_{BE(T)} = V_{BE(T_0)} + x_1 (T-T_0) + x_2 (T-T_0)^2 \]

- Second (higher) order terms can only be changed by \(\theta \)

- Again use linear combination
- Two \(V_{BE_s} \) for second-order compensation
 - Different \(V_{BE_s} \) (1 order)
 - Different \(\theta \)'s (1 order)
Block Schematic

![Block Schematic Diagram]

Different V_{BE}s (1 order)
Different θ’s (1 order)

$V_{ref} = 200$ mV

First implementation step

![First Implementation Diagram]

Both V_{BE}s have negative t.c. ➔ scale factors must have opposite sign

- a_1 positive
- a_2 negative

Reference Sources
A. van Staveren and W.A. Serdijn
Implementation of VBE generators

At low temperatures Q_a saturates I_B of Q_a degrades I_{ref}
Use cascade of NPNs

Implementation of the adder

- V_{off} in series with V_{ref}
- Use differential input stage
- Use sized-emitter transistors

V_{off} in series with V_{ref}
Low voltage level at input
Use differential input stage
Use sized-emitter transistors
Total Circuit

Where are the different blocks?

Measurement results

- $V_{\text{out}} = 194 \text{ mV}$
- Mean error = 1.5 ppm/K
- Output imp. = 43 Ω
- Noise $< 80 \text{nV/\sqrt{Hz}}$
- $I_{\text{power}} = 100 \mu\text{A}$