Engineering Mathematics

University

Mathematics in Sports

by Gresham College

A series of free public lectures on the Mathematics behind Sport, marking the approach to the 2012 London Olympics.

Mathematical Methods for Engineers II

by MIT

This graduate-level course is a continuation of Computational Science and Engineering I. Topics include numerical methods; initial-value problems; network flows; and optimization.

Introduction to Linear Dynamical Systems

by Stanford

Introduction to applied linear algebra and linear dynamical systems, with applications to circuits, signal processing, communications, and control systems.Topics include: Least-squares approximations of over-determined equations and least-norm solutions of underdetermined equations. Symmetric matrices, matrix norm and singular value decomposition. Eigenvalues, left and right eigenvectors, and dynamical interpretation. Matrix exponential, stability, and asymptotic behaviour. Multi-input multi-output systems, impulse and step matrices; convolution and transfer matrix descriptions. Control, reachability, state transfer, and least-norm inputs. Observability and least-squares state estimation. Prerequisites: Exposure to linear algebra and matrices. You should have seen the following topics: matrices and vectors, (introductory) linear algebra; differential equations, Laplace transform, transfer functions. Exposure to topics such as control systems, circuits, signals and systems, or dynamics is not required, but can increase your appreciation.

Convex Optimization II

by Stanford

Continuation of Convex Optimization I. Topics include: Subgradient, cutting-plane, and ellipsoid methods. Decentralized convex optimization via primal and dual decomposition. Alternating projections. Exploiting problem structure in implementation. Convex relaxations of hard problems, and global optimization via branch & bound. Robust optimization. Selected applications in areas such as control, circuit design, signal processing, and communications.n Model Predictive Control, Linear Time-Invariant Convex Optimal Control, Greedy Control, 'Solution' Via Dynamic Programming, Linear Quadratic Regulator, Finite Horizon Approximation, Cost Versus Horizon, Trajectories, Model Predictive Control (MPC), MPC Performance Versus Horizon, MPC Trajectories, Variations On MPC, Explicit MPC, MPC Problem Structure, Fast MPC, Supply Chain Management, Constraints And Objective, MPC And Optimal Trajectories, Variations On Optimal Control Problem

Convex Optimization I

by Stanford

Concentrates on recognizing and solving convex optimization problems that arise in engineering.Topics include: Convex sets, functions, and optimization problems. Basics of convex analysis. Least-squares, linear and quadratic programs, semidefinite programming, minimax, extremal volume, and other problems. Optimality conditions, duality theory, theorems of alternative, and applications. Interiorpoint methods. Applications to signal processing, control, digital and analog circuit design, computational geometry, statistics, and mechanical engineering.Prerequisites: Good knowledge of linear algebra. Exposure to numerical computing, optimization, and application fields helpful but not required; the engineering applications will be kept basic and simple.

Computational Science and Engineering I

by MIT

This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications.

The Fourier Transform and its Applications

by Stanford

Note: This course is being offered this summer by Stanford as an online course for credit. It can be taken individually, or as part of a master’s degree or graduate certificate earned online through the Stanford Center for Professional Development.The goals for the course are to gain a facility with using the Fourier transform, both specific techniques and general principles, and learning to recognize when, why, and how it is used. Together with a great variety, the subject also has a great coherence, and the hope is students come to appreciate both.Topics include: The Fourier transform as a tool for solving physical problems. Fourier series, the Fourier transform of continuous and discrete signals and its properties. The Dirac delta, distributions, and generalized transforms. Convolutions and correlations and applications; probability distributions, sampling theory, filters, and analysis of linear systems. The discrete Fourier transform and the FFT algorithm. Multidimensional Fourier transform and use in imaging. Further applications to optics, crystallography. Emphasis is on relating the theoretical principles to solving practical engineering and science problems.