
Energy and Momentum in EM Waves 
Challenge Problem Solutions 

 
Problem 1:  
 
As always, you are not given enough information to exactly determine the answer to this 
question.  Make your best estimates for unknowns, clearly indicating what your estimates 
are (e.g. Radius R ~ ….)  NO CREDIT will be given for simply guessing a final 
numerical answer from scratch.  It must be properly motivated (i.e. write equations!) 
 
Design a solar observatory.  Specifically, we want an observatory that does not have to 
orbit but rather can just sit still, hovering over the sun.  We will balance out gravity with 
radiation pressure.  You need to estimate the mass of the observatory and choose suitable 
dimensions for it. 
 
Some possibly useful numbers:  

11 2 -26.67 10 N m  kgG −= ×  83 10 m sc = ×  
Sail materials have to be very lightweight.  Current materials have areal mass densities of 
about 1 g/m2, but proposed materials are projected to be as low as 0.05 g/m2. 
The sun has mass 2 x 1030 kg and radius 7 x 108 m.  It radiates power at a rate of 3.9 x 
1026 Watts and has a rotation period of about 30 days. 
 
Problem 1 Solution: 
 
We need to at least balance out gravity with solar radiation pressure (we can always 
reduce the force of radiation pressure by simply tilting the sail) so: 
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Note that the distance from the sun drops out, so we have: 
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Since this is more dense than the sail material itself, this can work.  Let’s break the mass 
of the observatory into the part the equipment is in (which I’ll estimate has a mass of 
about 100 tons) and the sail itself, for which I’ll use a pretty realistic mass density of 0.5 
g/m2.  
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This corresponds to a sail that is 104 m (10 km) on a side.  This is large, but not totally 
unreasonable.  And certainly if I made the payload lighter and used a lighter sail material 
this number would come down (1 metric ton and 0.05 g/m2 leads to a sail less than a km 
on a side.) 



 
Extra Note:  We can easily get power from solar power.  We might need 100 kW, but 
even as far away as the Earth we have 1.4 kW/m2, meaning our sail will catch order 1011 
Watts!  Even if we only absorb a small fraction of this we will still have plenty! 



Problem 2: 
 
You have designed a solar space craft of mass m that is accelerated by the force due to 
the ‘radiation pressure’ from the sun’s light that fall on a perfectly reflective circular sail 
that it is oriented face-on to the sun. The time averaged radiative power of the sun is . 
The gravitational constant is G.  The mass of the sun is 

sunP

sm . The speed of light is .  
Model the sun’s light as a plane electromagnetic wave, traveling in the +z direction with 
the electric field given by  

c

 

 
G
E(z,t) = Ex ,0 cos(kz −ωt) î . 

 
You may express your answer in terms of the symbols , m P , , , G , c ms k , and ω  as 
necessary. 
 

a) What is the magnetic field  
G
B  associated with this electric field? 

 

b) What is the Poynting vector 
0

1
μ

= ×S E B
G G G

 associated with this wave? What is the 

time averaged Poynting vector 
0

1 T

dt
T

= ∫S S
G G

 associated with this superposition, 

where T is the period of oscillation. What is the amplitude of the electric field at 
your starting point? 

 
c) What is the minimum area for the sail in order to exactly balance the gravitational 

attraction from the sun?  
 

 
 
 
 
 
 
 
 
 
 
 
Problem 2 Solutions: 





 
 



Problem 3: 
 
Consider a plane electromagnetic wave with the electric and magnetic fields given by 
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Applying arguments similar to that presented in Section 13.4 of the Course Notes, show 
that the fields satisfy the following relationships: 
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Problem 3 Solutions: 
 
Consider a rectangular loop in the xz plane depicted in the figure below, with a unit 
normal . jn ˆˆ =

xz 
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Using Faraday’s law  
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the left-hand-side can be written as  
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where we have made the expansion  
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On the other hand, the rate of change of magnetic flux on the right-hand-side is given by  
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Equating the two expressions and dividing through by the area zxΔΔ  yields  
 

t
B

x
E yz

∂

∂
=

∂
∂

 

 
The second condition on the relationship between the electric and magnetic fields may be 
deduced by using the Ampere-Maxwell equation:  
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Consider a rectangular loop in the xy plane depicted in the figure below, with a unit 
normal .  kn ˆˆ =
 y
 
 
 
 
 
 
 
 
 
 
 
 
The line integral of the magnetic field is 
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On the other hand, the time derivative of the electric flux is  
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Equating the two equations and dividing by yxΔΔ , we have  
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Problem 4: 
 
The magnetic field of a plane electromagnetic wave is described as follows: 
 
 0

ˆsin( )B kx tω= −B j
G

 (0.1) 
 

a) What is the wavelength λ  of the wave? 
 

b) Write an expression for the electric field  
G
E  associated to this magnetic field. Be 

sure to indicate the direction with a unit vector and an appropriate sign (+ or –). 
 

c) What direction is this wave moving? 
 

d) What is the direction and magnitude Poynting vector associated with this wave?  
Give appropriate units, as well as magnitude.  

 
e) This wave is totally reflected by the thin perfectly conducting sheet lying in the y-

z plane at x = 0 .  What is the resulting radiation pressure on the sheet?  Give 
appropriate units, as well as magnitude.  

 
f) The component of an electric field parallel to the surface of an ideal conductor 

must be zero. Using this fact, find expressions for the electric and magnetic fields 
for the reflected wave. Check that the sum of your transmitted and reflected wave 
must satisfies the condition that the electric field is zero at the conducting sheet 
(located at x = 0 ).  

 
 
Problem 4 Solutions: 
(a) The wavelength is given by 

 2
k
πλ =  (0.2) 

 
(b) The amplitude of the electric field is related to the amplitude of the magnetic field by 
 
 0E cB0=  (0.3) 
 
The direction of the electric field, magnetic field, and propagation direction are related by 
 
 ( ) (dir dir propagation× =E B )

G G
 (0.4) 

 
Since , the electric field is given by ˆ ˆˆ− × =k j i
 
 0

ˆsin( ) ( )cB kx tω= − −E k
G

 (0.5) 
 



Alternatively, the differential version of the Generalized Ampere’s Law for a magnetic 
field that has a -component that is only a function of y x  and  (as given in Eq. t (0.1)) is 
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Noting that  
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Eq. (0.6) can be integrated with respect to time to find the electric field 
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The partial derivative in the integrand can be calculated using Eq. (0.1), 
 

 0 cos( )yB
kB kx t
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ω
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Substituting Eq. (0.9) into the integrand in Eq. (0.8) and integrated yields 
 

 2 2
0 0cos( ) sin( )z

kE c kB kx t dt c B kx tω ω
ω
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Finally, 

 1 k
c ω
= . (0.11) 

 
Substituting Eq. (0.11) into Eq. (0.10) yields 
 
 0 sin( )zE cB kx tω= − −  (0.12) 
 
In agreement with Eq. (0.5) for the z -component for the electric field. 
 
(c) The wave is moving in the positive x-direction.  
 
(d) The Poynting vector is given by 
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Substituting Eq. (0.5) and Eq. (0.1) into Eq. (0.13) yields 
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The magnitude of the Poynting vector is 
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and the units are . The time averaged Poynting vector is then   -2[ ] [W m ]= ⋅S
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Suppose you place a transmitter some distance in front of a perfectly conducting sheet, 
oriented so that the propagation direction of the waves hitting the reflector is 
perpendicular to the plane of the reflector (so that they’ll reflect straight back out towards 
the transmitter).  Assume that the wave is a plane wave with magnetic field given by Eq. 
(0.1) and has an electric field which you found in part a).  
 
(e) Since the electric field is totally reflected, the magnitude of the radiation pressure is 
given by (use Eq. (0.16) for the time averaged Poynting vector) 
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and the units are 
 

 
-2 -1 -2

-2
-1 -1

W m N m s m[ ] [N m
m s m spressureP

⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅ ⋅
= = = ⋅⎢ ⎥ ⎢ ⎥⋅ ⋅⎣ ⎦ ⎣ ⎦

]  (0.18) 

 
 
(f) The incident electric field will reflect from the sheet. The electric field is the linear 
superposition of the incident field and the reflected field, 
 
 incident reflected= +E E E

G G G
. (0.19) 

 
Substituting Eq. (0.5) for the incident electric field into Eq. (0.19) yields 
 
 . (0.20) 0
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In particular, the electric field must vanish on the conducting sheet located at x = 0 ,  
(recall that for a perfect conductor the electric field tangent to the surface is zero). 
 
 ( 0)x = =E 0
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Using the condition set by Eq. (0.21) in Eq. (0.20) yields 
 
 0

ˆ( 0) sin( ) ( ) reflectedx cB tω= = = − − +E 0 k E
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. (0.22) 
 
Thus we can solve Eq. (0.22) for the reflected wave at x = 0 , noting that 
sin( ) sin( )t tω ω− = −  
 
 0

ˆ( 0) sin( ) (reflected x cB tω )= =E
G

−k . (0.23) 
 
Since the reflected wave is traveling in the negative-x direction, the reflected electric 
field everywhere is given by 
 
 0

ˆsin( ) ( )reflected cB kx tω= + −E
G

k . (0.24) 
 
The associated reflected magnetic field is given by 
 
 0

ˆsin( ) ( )reflected B kx tω= + −B j
G

. (0.25) 
 
We can substitute Eq. (0.24) into Eq. (0.20) to fins that the sum of the incident and 
reflected electric field is  
 
 . (0.26) 0
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Similarly, the sum of the incident and reflected magnetic fields is then 
 
 . (0.27) 0

ˆ( sin( ) sin( )) ( )B kx t kx tω ω= − − + + −B
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On the plane  x = 0 , Eq. (0.26) and Eq. (0.27) become respectively, 
 
 
 ( 0)x = =E 0
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 (0.28) 

 
and  
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Problem 5: 
 
The electric field of an electromagnetic wave is given by the superposition of two waves 
 
 0 0

ˆcos( ) cos( ) ˆE kz t E kz tω ω= − + +E i
G

i . (0.30) 
 
You may find the following identities useful 
 
 cos( ) cos( )cos( ) sin( )sin( )kz t kz t kz tω ω+ = − ω  (0.31) 
 
 sin( ) sin( )cos( ) cos( )sin( )kz t kz t kz tω ω+ = + ω . (0.32) 
 

a) What is the associated magnetic field ( , , , )x y z tB
G

? 
 

b) What is the energy per unit area per unit time (the Poynting vector S ) transported 
by this wave? 

G

 
c) What is the time average of the Poynting S

G
 vector? Explain your answer, (note: 

you may be surprised by your answer, but try to explain it). Recall that the time 
average of the Poynting vector is given by 
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Problem 5 Solution: 
 
(a) The electric field in Eq. (0.30) is the superposition of two traveling waves, one in the 
positive z -direction and the other in the negative z -direction. The amplitude of the 
associated magnetic field is diminished by a factor of 1/ . By the right hand rule, the 
magnetic field associated with the wave traveling in the positive 

c
z -direction points in the 

ˆ+ j  (when the cos factor is positive), and the magnetic field associated with the wave 
traveling in the negative z -direction points in the ˆ− j  (when the cos factor is positive). 
Hence the magnetic field is given by 
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Using the identity in Eq. (0.31), Eq. (0.34) can be rewritten as 
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In a similar fashion, using Eq. (0.31), the electric field in Eq. (0.30) can be rewritten as  
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Equivalently, Faraday’s Law in differential form for the plane waves traveling in the 

-direction is given by z±
 

 yx BE
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Eq. (0.37) can be integrated with respect to time to find the electric field 
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The partial derivative in the integrand can be calculated using Eq. (0.36), 
 

 02 sin( )cos(xE kE kz t
z
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Substituting Eq. (0.39)into the integrand in Eq. (0.38)and integrated yields 
 

 0
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Finally, 

 1 k
c ω
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Substituting Eq. (0.41)into Eq. (0.40)yields 
 

 02 sin( )sin( )y
EB kz t
c

ω= , (0.42) 



 
in agreement with Eq. (0.35) for the -component of the magnetic field. y
 
(b) The Poynting vector is given by 
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Substituting Eq. (0.35) and Eq. (0.36) into Eq. (0.43) yields 
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Recall the identity 
 
 2cos( )sin( )) sin(2 )a a a= . (0.45) 
 
Use Eq. (0.45) twice in Eq. (0.44) yields 
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(c) Substitute Eq. (0.46) into Eq. (0.33) yielding 
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Integrate Eq. (0.47) finding 
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Since the wave described by Eq. (0.35) and Eq. (0.36) is a plane standing wave, the wave 
is not propagating, therefore there is no time averaged energy transport.  
 



MIT OpenCourseWare
http://ocw.mit.edu 

8.02SC Physics II: Electricity and Magnetism
Fall 2010
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

