2 Signals and Systems: Part I

Recommended Problems

P2.1

Let \(x(t) = \cos(\omega_x(t + \tau_x) + \theta_x) \).

(a) Determine the frequency in hertz and the period of \(x(t) \) for each of the following three cases:

<table>
<thead>
<tr>
<th>(\omega_x)</th>
<th>(\tau_x)</th>
<th>(\theta_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (\pi/3)</td>
<td>0</td>
<td>2(\pi)</td>
</tr>
<tr>
<td>(ii) (3\pi/4)</td>
<td>1/2</td>
<td>(\pi/4)</td>
</tr>
<tr>
<td>(iii) (3/4)</td>
<td>1/2</td>
<td>1/4</td>
</tr>
</tbody>
</table>

(b) With \(x(t) = \cos(\omega_x(t + \tau_x) + \theta_x) \) and \(y(t) = \sin(\omega_y(t + \tau_y) + \theta_y) \), determine for which of the following combinations \(x(t) \) and \(y(t) \) are identically equal for all \(t \).

<table>
<thead>
<tr>
<th>(\omega_x)</th>
<th>(\tau_x)</th>
<th>(\theta_x)</th>
<th>(\omega_y)</th>
<th>(\tau_y)</th>
<th>(\theta_y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (\pi/3)</td>
<td>0</td>
<td>2(\pi)</td>
<td>(\pi/3)</td>
<td>1</td>
<td>(-\pi/3)</td>
</tr>
<tr>
<td>(ii) (3\pi/4)</td>
<td>1/2</td>
<td>(\pi/4)</td>
<td>(11\pi/4)</td>
<td>1</td>
<td>(3\pi/8)</td>
</tr>
<tr>
<td>(iii) (3/4)</td>
<td>1/2</td>
<td>1/4</td>
<td>(3/4)</td>
<td>1</td>
<td>(3/8)</td>
</tr>
</tbody>
</table>

P2.2

Let \(x[n] = \cos(\Omega_x(n + P_x) + \theta_x) \).

(a) Determine the period of \(x[n] \) for each of the following three cases:

<table>
<thead>
<tr>
<th>(\Omega_x)</th>
<th>(P_x)</th>
<th>(\theta_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (\pi/3)</td>
<td>0</td>
<td>2(\pi)</td>
</tr>
<tr>
<td>(ii) (3\pi/4)</td>
<td>2</td>
<td>(\pi/4)</td>
</tr>
<tr>
<td>(iii) (3/4)</td>
<td>1</td>
<td>1/4</td>
</tr>
</tbody>
</table>

(b) With \(x[n] = \cos(\Omega_x(n + P_x) + \theta_x) \) and \(y[n] = \cos(\Omega_y(n + P_y) + \theta_y) \), determine for which of the following combinations \(x[n] \) and \(y[n] \) are identically equal for all \(n \).

<table>
<thead>
<tr>
<th>(\Omega_x)</th>
<th>(P_x)</th>
<th>(\theta_x)</th>
<th>(\Omega_y)</th>
<th>(P_y)</th>
<th>(\theta_y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (\pi/3)</td>
<td>0</td>
<td>2(\pi)</td>
<td>(8\pi/3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(ii) (3\pi/4)</td>
<td>2</td>
<td>(\pi/4)</td>
<td>(3\pi/4)</td>
<td>1</td>
<td>(-\pi)</td>
</tr>
<tr>
<td>(iii) (3/4)</td>
<td>1</td>
<td>1/4</td>
<td>(3/4)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

P2.3

(a) A discrete-time signal \(x[n] \) is shown in Figure P2.3.
Sketch and carefully label each of the following signals:

(i) \(x[n - 2] \)
(ii) \(x[4 - n] \)
(iii) \(x[2n] \)

(b) What difficulty arises when we try to define a signal as \(x[n/2] \)?

For each of the following signals, determine whether it is even, odd, or neither.

(a) \(x(t) \)
(b) \(x(t) \)

(c) \(x(t) \)
(d) \(x[n] \)
Consider the signal $y[n]$ in Figure P2.5.

(a) Find the signal $x[n]$ such that $E_0[x[n]] = y[n]$ for $n \geq 0$, and $O_0[x[n]] = y[n]$ for $n < 0$.

(b) Suppose that $E_0[w[n]] = y[n]$ for all n. Also assume that $w[n] = 0$ for $n < 0$. Find $w[n]$.

(a) Sketch $x[n] = \alpha^n$ for a typical α in the range $-1 < \alpha < 0$.

(b) Assume that $\alpha = -e^{-1}$ and define $y(t)$ as $y(t) = e^{\alpha t}$. Find a complex number β such that $y(t)$, when evaluated at t equal to an integer n, is described by $(-e^{-1})^n$.

(c) For $y(t)$ found in part (b), find an expression for $Re\{y(t)\}$ and $Im\{y(t)\}$. Plot $Re\{y(t)\}$ and $Im\{y(t)\}$ for t equal to an integer.

Let $x(t) = \sqrt{2}(1 + j)e^{j \pi /4}e^{(-1+j)2\pi t}$. Sketch and label the following:

(a) $Re\{x(t)\}$

(b) $Im\{x(t)\}$

(c) $x(t + 2) + x^*(t + 2)$
P2.8

Evaluate the following sums:

(a) \(\sum_{n=0}^{5} 2 \left(\frac{3}{4} \right)^n \)

(b) \(\sum_{n=-2}^{6} b^n \)

(c) \(\sum_{n=-\infty}^{\infty} \left(\frac{2}{3} \right)^{2n} \)

Hint: Convert each sum to the form

\[C \sum_{n=0}^{N-1} \alpha^n = S_N \quad \text{or} \quad C \sum_{n=0}^{\infty} \alpha^n = S_\infty \]

and use the formulas

\[S_N = C \left(\frac{1 - \alpha^N}{1 - \alpha} \right), \quad S_\infty = \frac{C}{1 - \alpha} \quad \text{for } |\alpha| < 1 \]

P2.9

(a) Let \(x(t) \) and \(y(t) \) be periodic signals with fundamental periods \(T_1 \) and \(T_2 \), respectively. Under what conditions is the sum \(x(t) + y(t) \) periodic, and what is the fundamental period of this signal if it is periodic?

(b) Let \(x[n] \) and \(y[n] \) be periodic signals with fundamental periods \(N_1 \) and \(N_2 \), respectively. Under what conditions is the sum \(x[n] + y[n] \) periodic, and what is the fundamental period of this signal if it is periodic?

(c) Consider the signals

\[x(t) = \cos \frac{2\pi t}{3} + 2 \sin \frac{16\pi t}{3}, \quad y(t) = \sin \pi t \]

Show that \(z(t) = x(t)y(t) \) is periodic, and write \(z(t) \) as a linear combination of harmonically related complex exponentials. That is, find a number \(T \) and complex numbers \(c_k \) such that

\[z(t) = \sum_k c_k e^{j(2k\pi/T)t} \]

P2.10

In this problem we explore several of the properties of even and odd signals.

(a) Show that if \(x[n] \) is an odd signal, then

\[\sum_{n=-\infty}^{\infty} x[n] = 0 \]

(b) Show that if \(x_1[n] \) is an odd signal and \(x_2[n] \) is an even signal, then \(x_1[n]x_2[n] \) is an odd signal.
(c) Let \(x[n] \) be an arbitrary signal with even and odd parts denoted by
\[
x_e[n] = Ev[x[n]], \quad x_o[n] = Od[x[n]]
\]
Show that
\[
\sum_{n = -\infty}^{+\infty} x[n] = \sum_{n = -\infty}^{+\infty} x_e[n] + \sum_{n = -\infty}^{+\infty} x_o[n]
\]

(d) Although parts (a)–(c) have been stated in terms of discrete-time signals, the analogous properties are also valid in continuous time. To demonstrate this, show that
\[
\int_{-\infty}^{+\infty} x^2(t) \, dt = \int_{-\infty}^{+\infty} x_e^2(t) \, dt + \int_{-\infty}^{+\infty} x_o^2(t) \, dt,
\]
where \(x_e(t) \) and \(x_o(t) \) are, respectively, the even and odd parts of \(x(t) \).

P2.11

Let \(x(t) \) be the continuous-time complex exponential signal \(x(t) = e^{j\omega_0 t} \) with fundamental frequency \(\omega_0 \) and fundamental period \(T_0 = 2\pi/\omega_0 \). Consider the discrete-time signal obtained by taking equally spaced samples of \(x(t) \). That is, \(x[n] = x(nT) = e^{j\omega_0 nT} \).

(a) Show that \(x[n] \) is periodic if and only if \(T/T_0 \) is a rational number, that is, if and only if some multiple of the sampling interval exactly equals a multiple of the period \(x(t) \).

(b) Suppose that \(x[n] \) is periodic, that is, that
\[
\frac{T}{T_0} = \frac{p}{q}, \quad (P2.11-1)
\]
where \(p \) and \(q \) are integers. What are the fundamental period and fundamental frequency of \(x[n] \)? Express the fundamental frequency as a fraction of \(\omega_0 T \).

(c) Again assuming that \(T/T_0 \) satisfies eq. \((P2.11-1) \), determine precisely how many periods of \(x(t) \) are needed to obtain the samples that form a single period of \(x[n] \).